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Criticality of dipolar fluids: Liquid-vapor condensation versus phase separation
in systems of living polymers
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We consider the strongly dipolar fluid as an equilibrium mixture of self-assembled chains as suggested by
the results of recent simulations. The free energy of the system is given by the sum of the free energy of an
ideal chain mixture and additional terms arising from the interactions. We discuss the inclusion of such terms,
namely, dipole-dipole interactions between monomers, hard core interactions between monomers and between
chains, and dispersive interactions between monomers and between chains. We calculate the phase diagrams
for several ratios of dispersive to dipolar interactions (l) and the corresponding critical points. In agreement
with the simulation results we have found ordinary liquid-vapor coexistence for 0.34,l<1. When l is
decreased still further, the theory predicts that coexistence obtains for a fluid of chains. The critical density
decreases and the mean chain length at the critical point increases exponentially asl→0. The reasons why
this coexistence between chained fluids was not observed in the simulations are discussed.
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Despite much theoretical and simulation work extend
over the past two decades, our understanding of the p
behavior of dipolar fluids is still incomplete. Recently, th
phase diagrams of both dipolar hard spheres~DHSs! and
dipolar soft spheres~DSSs! were investigated in detail by
computer simulation, and two characteristic features
strongly dipolar fluids were established:~i! a ferroelectric
liquid phase at high densities@1#, and ~ii ! a phase of self-
assembled weakly interacting chains at low densities@2#. No
ordinary liquid phase was found in these systems@3#, and it
has been shown that additional isotropic attractions are
quired in order that ordinary liquid-vapor condensation m
occur @4#.

In recent theoretical work@5–7#, it was argued that chain
formation is a consequence of the very pronounced ani
ropy of the dipole-dipole interaction, and in particular of t
strong coupling between the orientations of a pair of dipo
and that of the interdipole vector: two parallel dipoles w
repel each other if placed side by side, but attract each o
if head-to-tail. The latter geometry is the most favorab
with an energy minimum twice as deep as that of the ne
most-favorable configuration, namely, two antiparallel
poles. For sufficiently large dipole moments, this differen
gives rise to very anisotropic short-range correlatio
whence chaining.

In the last of these studies@7# the behavior of the strongly
dipolar fluid was described by assuming that the chains
be treated by the standard methods of polymer theory. Th
it was shown that a fluid of hard spheres of diameters, with
embedded dipoles of strengthm, interacting via the dipole-
dipole potential
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m2

r 12
3 @3~m̂1• r̂12!~m̂2• r̂12!2m̂1•m̂2#, r 12.s,

~1!

~where unit vectors are denoted by a hat and the sym
have their usual meaning!, may be treated as an ideal mixtu
of equilibrium chains with free energy per bond,2kBTS0 .
S0 is the sum of the bond average energy and conformatio
entropy and is given in terms of the temperature and redu
dipole moment by@7#,

S05 lnS p~T* s!3

18
e2/T* D2

3T*

2
, ~2!

whereT* 5kBTs3/m2 is the reduced temperature. The fre
energy per unit volume of the system of non-interacti
chains is@7#

b f 5 (
N51

`

rN~ ln rN21!2 (
N51

`

rN~N21!S0 , ~3!

whereb51/kBT andrN is the density of chains of lengthN
(N monomers!. Except for the dependence ofS0 on T, this
free energy is analogous to that used to describe a syste
living polymers @8#. A straightforward calculation of the
mean chain lengthN̄ of the equilibrium distribution yields

N̄5
1

2
1A1

4
1reS0, ~4!

and thus at a given temperatureT* , the chains dissociate
(N̄→1) asr→0, while at fixedr, the chains dissociate asT*
increases. The mean chain length varies continuously a
calculation of d2b f /dr2 shows that the system of idea
chains is stable at all~nonzero! densities and temperature
At r50 andT* 50, however,N̄ diverges while the second

d-
.
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and third derivatives of Eq.~3! vanish; consequently th
limit ( r→0,T*→0) is identified with a polymerization tran
sition @7#.

In this paper we investigate the possibility of liquid-vap
condensation in systems of DHSs with and without ad
tional isotropic attractions. The phase diagram of a sim
model~DSSs1 Lennard-Jones interactions! was studied, for
a range of isotropic to dipolar interactions, using compu
simulation@4#. Our theory reproduces the simulation resu
for the line of liquid-vapor critical points of the model. I
addition, we show that the critical line extends to lower
tios of isotropic to dipolar interactions than reported in t
simulation, as a line of critical points of interacting~equilib-
rium! chains. Finally, our theory provides a description
how the critical line terminates, as the isotropic interactio
are turned off.

Let us start by rewriting the dipole-dipole potential as

fdd5
m2

r 12
3 @22 cosu1 cosu21sin u1 sin u2 cos~f12f2!#,

~5!

where (u1 ,f1) and (u2 ,f2) are the polar and azimutha
angles of the dipole moments in the intermolecular frame
reference. The contribution to the free energy of the low
minimum of the potential, corresponding to head to t
alignment of the DHSs, is included in the free energy of
fluid of free chains, viaS0 . The second minimum, whos
value is one half of the lowest one and which correspond
a configuration of antiparallel dipoles, is determined by
second term of the right-hand side of Eq.~5!. We shall as-
sume that the second minimum gives rise, after averag
over all orientations, to an isotropic effective potential th
contributes for chain dissociation and, if strong enou
yields liquid-vapor condensation. A similar idea was pr
posed originally by Van Roij@6# in his study of chain for-
mation versus condensation in associating fluids. He
shown that it is the ratio of isotropic to anisotropic intera
tions that determines whether the system condenses or f
chains. However, his results cannot be applied to the D
fluid, since the connection with the underlying model inte
actions is missing in his analysis.

The dependence of the bond free energy (S0) on the di-
polar strength was previously identified@7#. In what follows,
we derive the isotropic effective potential for the strong
dipolar fluid. The first step is to define a ‘‘residual’’ dipola
potential by ‘‘subtracting’’ the lowest minimum~already in-
cluded inS0) from the full dipole-dipole potential. The ‘‘re-
sidual’’ potential has a minimum at (u15u25p/2 ,f12f2
5p), and, because it is a polar potential in a nonpolar pha
its integral over all orientations must vanish. With these
strictions we are led to an obvious choice for the ‘‘residua
dipolar potential, namely

fdd
res5

m2

r 3 sin u1 sin u2 cos~f12f2!. ~6!

In general, the isotropic attractive contribution to the fr
energy is obtained using a low density/high temperature
proximation. This was done by Groh and Dietrich@11# for
the full potentialfdd but, as remarked in@7,13#, this proce-
i-
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dure can only be applied to weak dipolar fluids, since
overestimates the effective isotropic attractions, neglects
anisotropic short range correlations, and gives results
disagree qualitatively with simulations: no chains are form
and liquid-vapor condensation obtains for all reduced dip
moments. This approximation also fails for the relative
weaker ‘‘residual’’ potential. In fact, the inclusion of such
term in our free energy destroys the chains at all tempe
tures. The problem can be traced to the exponential dep
dence of the second virial coefficient offdd

res , on the reduced
dipole moment.

Following a suggestion by Woodward and Nordholm@9#
we calculated the effective isotropic potentialfe f f(r 12) as

exp@2bfe f f~r 12!#5E dV1E dV2

1

~4p!2 exp~2bfdd
res!,

~7!

where *dV i5*0
2pdf i*0

p sinuidui . This is, in fact @9#, an
excess free energy, since it is the sum of the interac
energy of two dipoles~calculated by integratingfdd

res

weighted by the Boltzmann factor! and the entropy loss o
the interacting dipole pair. By carrying out three of the int
grations in Eq.~7!, the effective potential becomes

bfe f f~r !52 logF1

2

r 3

bm2E
0

p

sinhS bm2 sin u

r 3 DduG . ~8!

We remark thatfe f f(r ) is an effective potential betwee
monomers, since the effect offdd on chain formation has
been accounted for, previously, in the bond free ener
Thus, the corresponding free energy density, in a mean fi
approximation, is

b f dd~r1!5
1

2
r1

2E
s

1`

r 2drbfe f f~r !. ~9!

The high temperature approximation to the integral in Eq.~9!
is 2 (1/18T* 2) . It can be shown that this overestimates E
~9! at all temperatures. For simplicity we have used the a
lytical approximation for the integral in our calculations
the phase diagrams.

The contribution of the excluded volume of chains
much harder to calculate. For large dipole moments the lo
intersection of two chains is the same as that of two ro
since the chains are locally rigid. Let us introduce the re
tively rigid chain segment of lengthl . If N is the total
number of spheres in a chain, then each chain containsNs/l
such rigid segments. The excess free energy of a syste
hard rods with densityr l may be approximated by@10#

b f HC
rods5

1

8
r l

2 423h l

~12h l !2
^vexcl&, ~10!

wherer l is the density of rods,̂vexcl& is the average ove
orientations of the excluded volume of two rods, andh l

5 (p/6)l s2r l is the packing fraction of rods of lengthl
with l /s spheres.r l is related to the total density of th
systemr by r5r l (l /s) and, for an isotropic distribution
of rods, ^vexcl&52pl s21 (p/2)l 2s. In the limit of long
rods (l @s), Eq. ~10! becomes
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b f HC~r!5
3

8
r

4h23h2

~12h!2
5

3

8
b f CS~r!, ~11!

where h5 (p/6) s3r is the packing fraction of the hard
sphere fluid.

Since we want to compare our theory with the simulatio
of @4#, we must add to the DHS potential a Lennard-Jon
~LJ! tail, fLJ(r )52e0(s/r )6 . We definel5e0s3/m2 as
the ratio of the dispersion to the dipolar interactions@4#.

The simplest effective potential between two rods
l /s spheres interacting through a LJ tail isfLJ

e f f(r )
5(l /s)2fLJ(r ), wherer is the distance between the cente
of the rods. This effective potential must be integrated o
side the exclude volume of two rods@7#. Considering again
chains as a concatenation of rigid rods andl @s, the contri-
bution to the free energy, of the LJ tail of spheres in cha
becomes

b f dis
ch ~r!52

1

2
s3r2

8pl

9T*
. ~12!

As we want to recover the free energy of a simple flu
whenr.r1 , we must add to Eqs.~11! and ~12! monomer-
monomer contributions not yet accounted for through
contributions of the effective interactions of spheres
chains~note that some chains have a length of 1!. It is easy to
check that we must add to the excluded volume free ene

b f HS
m ~r1!5

5

8
r1

4h123h1
2

~12h1!2
5

5

8
b f CS~r1!, ~13!

whereh15 (ps3/6) r1, and to the isotropic attractive term

b f dis
m ~r1!52

1

2
s3r1

2 4pl

9T*
. ~14!

The free energy of the system of interactingequilibrium
chains is thus the sum of Eqs.~3!, ~9!, and~11!–~14!. After
minimizing with respect torN , to find the equilibrium den-
sity distribution, it is straightforward to write the second a
third derivatives of the free energy with respect tor and
show that they can vanish at finite densities and temp
tures, yielding a line of critical points as a function ofl.
Finally, by equating the pressure and chemical potentia
the two phases, we can calculate the phase diagram for
value ofl.

We note that the terms that account for interchain int
actions are strongly oversimplified. As far as comparis
with computer simulations is concerned, we are intereste
the limit where the onset of chain formation occurs close
the liquid-vapor condensation, and in this limit the free e
ergy is dominated by the terms corresponding to monom
monomer interactions.

Our results are summarized in Fig. 1, which closely
sembles the simulation results of@4# for a similar model. In
the simulations the gibbs ensemble Monte Carlo~GEMC!
method was used to calculate the liquid-vapor coexiste
curve for each value ofl. Whenl51 the simulated mode
corresponds to the Stockmayer fluid which is known to
hibit a liquid phase and a liquid-vapor critical point. va
s
s

f

t-

,

e

y,

a-

in
ch

-
n
in
o
-
r-

-

e

-

Leeuwen and Smit@4# obtained liquid-vapor coexistenc
curves for a range ofl, down to a threshold of dispersio
interactions corresponding tol50.3. When coexistence wa
found, the coexisting liquid and vapor phases were obser
to be in the simple fluid regime, i.e., no chains were seen
the simulation boxes. When the dispersion interactions w
further reduced, the authors could not find an ordinary liq
phase and chains appeared to self-assemble, preem
liquid-vapor condensation.

For systems withl51 the agreement between the resu
of our calculations and the simulated coexistence curve
fairly good. For other values ofl our results exhibit critical
temperatures and densities that are slightly higher than th
found in the simulation. Nevertheless, the trends observed
the computer simulations are captured semiquantitatively
the theoretical results. The threshold value ofl, required for
ordinary coexistence between monomer-rich phases obta
in the simulation~l50.3!, is very similar to our theoretica
estimate: the value of the average chain lengthN̄ at the criti-
cal point (N̄c) is less than 2 down tol50.34.

However, the theoretical critical line continues down
l50, as the critical point of a fluid of chains. Below th
critical point the fluid separates into two fluids of chains w
different densities and average chain lengths. We note
the value ofN̄c grows exponentially with decreasingl and
Tc* , and thus these critical points may be difficult to obser
in a conventional simulation owing to finite size effect
Since the critical density decreases exponentialy with

FIG. 1. Phase diagrams of the generalized Stockmayer fluid~full
lines!, calculated for the indicated values ofl. The dashed line is
the line of critical points. The dot marks the transition to the ch
regime. Below this temperature the critical points correspond t

mean chain lengthN̄c.2 and coexistence obtains between tw
phases of chains. When the attractive interactions are turned off
line of critical points tends to the polimerization transition, whe
the mean chain length becomes infinite. The triangles are the
mates of the critical points for the indicated values ofl from
GEMC simulations of@4#.
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creasingl these points may be undetectable in simulation
moderate and low valuesl.

Whenl50, our model represents the DHS fluid. The
traction between monomers due to the ‘‘residual’’ dipo
dipole potential~9! is, however, too low to make condens
tion possible@even taking, as we did, an overestimated va
of the integral in Eq.~9!#. The critical behavior of the DHS
fluid is then the same as that of the ideal chain mixture. T
can easily be seen in Fig. 2: whenl→0, the critical density
and temperature→0, andN̄c diverges. So, again, we observ
a polymerization transition at (r,T* )5(0,0).

FIG. 2. log10 of the mean chain length at the critical point as
function of l.
a,
t

-
-

e

is

In the theoretical works of Van Roij@6# and Osipovet al.
@7#, it has been argued that there is a competition betw
chain formation and liquid vapor-condensation: when isot
pic attractions between monomers are strong enough to
hibit chain formation, the clustering of the particles is driv
by the usual energy-entropy mechanism. However, in
present work we have found condensation for all finite v
ues of l. This is due to the inclusion of chain attraction
which promote condensation of chained fluids. We note t
while for the DHS fluid the effective isotropic attraction
between chains are negligible, this is not so when the mo
mers interact through a van der Waals attraction. In fact,
dependence of the critical density onl obtained in the simu-
lations of @4# cannot be reproduced unless chaining and v
der Waals interactions between chains are taken into
count.

In our analysis we have only considered isotropic flu
phases. Whether these phases are globally stable requi
study of their stability with respect to ordered phases~ferro-
electric liquid, solid! that are expected to appear at suf
ciently high densities and dipole moment@11–13#. This
analysis is beyond the scope of this paper but we expect
chained liquid to be globally stable over a very narrow
gion of temperatures, or not at all.
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